Low-x Measurements with ATLAS

Brian A. Cole, Columbia University May 12, 2010

Some ancient history

p-A Physics in ATLAS - Overview

- Study of p-A collisions is essential @ LHC
 - To provide baseline for heavy ion measurements.
 - Physics intrinsically compelling
 - ➤ Mini-jet production, multiple semi-hard scattering.
 - ➤ Shadowing test of "Eikonal" QCD.
 - ➤ Gluon saturation probe QCD @ high gluon density.
 - > Test factorization.
 - ➤ Multiple hard scattering Measure parton correlations in nucleon (and nucleus ?)
- ATLAS is ideal detector for p-A studies
 - η coverage, calorimeter performance, b tagging, lepton identification, inner tracking.

April 2, 2002

B.A. Cole – p-A physics w/ ATLAS

1

 Low-x physics was the reason I became interested in ATLAS in the first place ...

"Low-x" Measurements in ATLAS

p+p

- Inclusive particle production
- Rapidity-separated jets (BFKL)
- Diffractive hard processes (BFKL)

Pb+Pb

- Inclusive particle production
- Direct photon, Z production (shadowing)
 - ⇒Measure b dependence of shadowing?
- Ultra-peripheral (γ*+A)

p+Pb

- all hard processes especially γ+jet (shadowing)
- Moderate p_T hadrons, jets, direct γ vs η
- Very forward π^0 production with ZDC with fully implemented high-resolution EM module

The ATLAS Detector: Schematic

MBTS trigger scintillators

ATLAS Acceptance

ATLAS Event Display

Run Number: 152166, Event Number: 890572

Date: 2010-03-30 15:19:40 CEST

7 TeV Event with Jets and 2 Muons

Di-jet + two muons (heavy quark di-jet?)

ATLAS Inner Tracker

- Silicon detectors (only) used in "minimum-bias" results
 - 3 pixel layers (50 x 400 μm)
 - 4 double-sided strip layers (80 μm x 12.6 cm, 2.3° stereo).

ATLAS p-p event selection

- MBTS Time difference for different event selections
 - Vertex requires 2 tracks w/ p_T > 150 MeV/c.
 - Good track has $|\eta|$ < 2.5, p_T > 500 MeV/c.

p-p min-bias charged particle multiplicity

Analysis described in ATLAS-CONF-2010-024

Event selection:

- Good vertex (2 tracks with p_T > 150 MeV)
- At least one track with $|\eta|$ < 2.5 and p_T > 500 MeV

p-p min-bias multiplicity compared to PYTHIA

Min-bias multiplicity compared to PYTHIA (2)

But more significant deviation at high multiplicity

p-p min-bias pt distribution

• PYTHIA parameterized using Tevatron data does well for p_T < 2 GeV/c, but significantly over-predicts for 2 < p_T < 10 GeV/c

p-p min-bias <pT> vs multiplicity

• PYTHIA (all tunes) badly over-estimates growth of <p_T> with charged particle multiplicity

Multiplicity, dN/dn measurement in Pb+Pb

Multiplicity, dN/dn Measurement in Pb+Pb

3-point tracks, including event vertex

Old story

- Tracklets directly measure multiplicity, dN/dη
 - Raw distribution (points) matches HIJING min-bias (hist)
 - Maximum 15% correction over entire centrality range.

14

- Tracklet method now being tested, calibrated on p-p data
 - agrees with full tracking for p_T > 500 MeV to ~ 1%.
 - ⇒ATLAS CONF note "soon"

Pb+Pb: Prompt Photon Spectra

- Demonstration of what measured prompt photon spectrum will look like for 0.5 nb⁻¹ ($|\eta|$ < 2.4)
 - Background measurement & subtraction errors
 - \Rightarrow All for neutral hadron $R_{AA} = 1$ (worst case)
- γ rates for (original) 1 year LHC run (0.5 nb⁻¹):
 - \Rightarrow 100k for p_T^Y > 30 GeV, 10k for p_T^Y > 70 GeV
- How many runs will 0.5 nb⁻¹ require?

Nuclear PDFs, Impact on Pb+Pb Jets

From EPS09, JHEP 0904:065, 2009

Region of x, Q² relevant for jets at mid-rapidity

• (Too?) small average modification of nuclear gluon distribution, but <u>b dependence</u>, y/n dependence?

ATLAS Acceptance, very rough x coverage

Naive 2→2 kinematics,

Does not account for p+Pb CM shift

Old - need to multiply all x_{min} values by 2

Jet Measurements @ Moderate pt

- For jet measurements in p+p, p+Pb to be "interesting" need to keep Q² moderate
 - ⇒Need to measure jets down to ~ 10 GeV.
 - ⇒Done by ATLAS (and CMS) in 900 GeV p+p

- A proof of principle -- many issues to get under control (underlying event, calorimeter noise)
 - ⇒Nonetheless, suggests Q² ~ 100 GeV² accessible.

Ultra-low x w/ ATLAS ZDC + precision EM

ATLAS: Low-x Physics w/ ZDC

From P. Steinberg Quark Matter 2006 ATLAS heavy ion physics plenary talk

$$x_F = x_1 - x_2$$
$$x_1 x_2 = \frac{m_T^2}{s}$$

$$x_1 \sim \frac{m_T}{\sqrt{s}} e^y \quad x_2 \sim \frac{m_T}{\sqrt{s}} e^{-y}$$

Extracted from a previous talk that was in turn extracted from a previous talk ...

- Can access x <~ 10⁻⁶ @ moderate pT (> 4 GeV/c)
 - Correlate with jets in ATLAS calorimeters ($|\eta|$ < 5)
 - Study acoplanarity vs Δη
- I once made a rash statement: ATLAS ZDC w/ precision EM will provide lowest x for identified particles @ LHC
 - While it may have been rash, it was and still is true

ATLAS Low-x measurements

- ATLAS will make a number of measurements that may provide insight on low-x physics
 - Inclusive hadron production in p-p, Pb+Pb, p+Pb
 - Rapidity separated jets
 - ⇒Too early yet for jets in range 3< |η| < 5 but will come
 - Diffractive jets
 - ⇒Will calorimeter noise be low enough to allow clean identification of rapidity gaps?
 - Penetrating hard final states in Pb+Pb (e.g. direct γ)
 - ⇒Potential probe of b dependence of shadowing
 - ⇒But, "the devil is in the details ..."
 - p+Pb a "playground for low-x physics in nuclei"
 - ⇒An entire physics program in its own right
 - ⇒p+Pb sooner than we once expected?